Modelling and control summaries

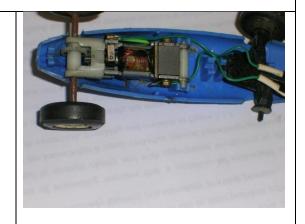
by Anthony Rossiter

MATLAB GUIs – Modelling a DC servo

ASSUMPTION: Students should understand how to derive a simplified model of DC servo. See section on 2nd order modelling for more detail.

$$v = \frac{Jk}{K} \frac{d^2 w_L}{dt^2} + \left\{ \frac{Bk}{K} + \frac{JR}{k} \right\} \frac{dw_L}{dt} + \left\{ k + \frac{BR}{k} \right\} w_L$$

J is inertia of load


B is damping of load

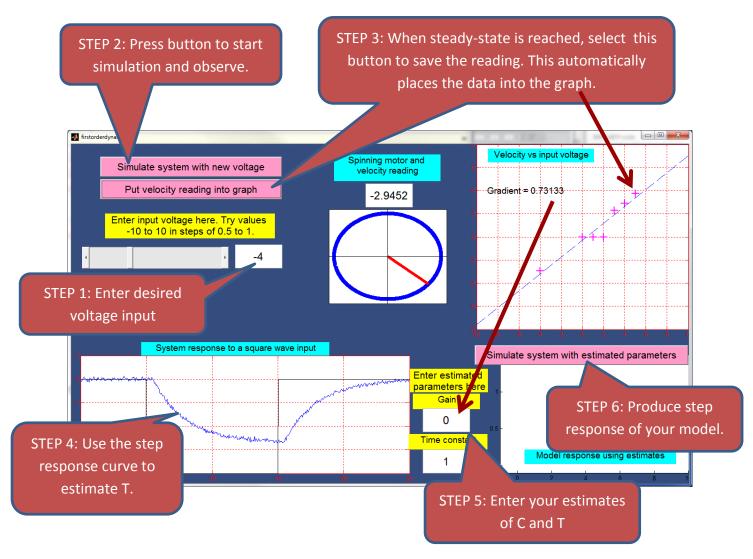
k is the constant linking back emf and rotational frequency.

R is the resistance in the coil.

K represents any springiness in the shaft – here assume $K=\infty$ so model simplifies to:

$$v = \left\{\frac{JR}{k}\right\} \frac{dw_L}{dt} + \left\{k + \frac{BR}{k}\right\} w_L$$

SUMMARY: The model between angular velocity of the load and voltage supply to a simple DC servo can be well represented by a 1st order ODE.


First order models can be represented in time constant form with parameters of gain (C) and time constant (T) as:

$$Cv = T\frac{dw_L}{dt} + w_L$$

The MATLAB GUI is use to represent an experimental technique for determining the parameters C and T $\,$

Estimating C using measured	 In steady-state one has the relationship Cv=w_L
data.	 Plot a graph of v against w_L for a number of different
	values. The gradient of the curve will be C.
Estimating T using measured	Readers are referred to the section on 1 st order responses
data	where it is shown that for a standard step response, the curve
	reaches 63% of the steady-value in T sec.

Operation of the GUI is described below. Users should recognise that, as with taking real experimental data, the user is required to perform operations in a well defined sequence in order to collect the correct results. Failure to use this sequence can give poor results.

USERS should <u>repeat steps 1 to 3</u> for a wide range of voltages in order to get a large scale view of the velocity dependence upon voltage and whether this is in deed presented by a straight line. [WARNING: when 1st opened it can take a while for the 1st value to run as MATLAB is opening relevant files/toolboxes so please be patient before moving to the 2nd value of voltage].

Notes:

- Once sufficient points are on the graph, the GUI will provide an estimate of C (gradient) for you.
- Real systems tend to include stiction. You will note that there is no movement/velocity for low voltages as the torque is too small.

ILLUSTRATIONS – users will see the motor spinning at different speeds as he voltage is changed, but only after selecting 'simulate with new voltage' button.

FILENAMES are firstorderdynamics.p, firstorderdynamics.fig and nonlinear1stordermodel.mdl All 3 are needed!

Type >> firstorderdynamics to run