The full definition of a Nyquist diagram is the mapping of $G(s)$ while s describes the D-contour. A system is closed-loop stable ($n_c=$number RHP closed-loop poles) if and only if the number of counter-clockwise encirclements of -1 point matches number n_o of open-loop RHP poles.

Alternatively, apply $n_q=n_c-n_o$ **directly or** $n_c=n_q+n_o$

Apply Nyquist stability criteria to numerous examples

Case 1:

$$G = \frac{5}{s+4};$$

$$n_o = 0$$
$$n_q = 0$$

$\Rightarrow n_c = 0$

CLOSED-LOOP STABLE
(For all +ve K)

![Nyquist plot](image1)

Case 2:

$$G = \frac{3}{(s+2)(s+1)};$$

$$n_o = 0$$
$$n_q = 0$$

$\Rightarrow n_c = 0$

CLOSED-LOOP STABLE
(For all +ve K)

![Nyquist plot](image2)
\[G = \frac{5}{(s+1)^3}; \quad K = 1 \]
\[n_o = 0 \]
\[n_q = 0 \]
\[\Rightarrow \quad n_c = 0 \]

Clearly stable for current \(K \).

However, \(K > 8/5 \) implies that \(n_q = 2 \) and hence one will have \(n_c = 2 \), that is closed-loop instability.

\[G = \frac{s + 0.1}{(s + 0.2)(s - 1)}; \quad K = 1 \]
\[n_o = 1 \]
\[n_q = 0 \]
\[\Rightarrow \quad n_c = 1 \]

Clearly **unstable** for current \(K \) (a closed-loop RHP pole).

However, \(K > 2 \) implies that \(n_q = -1 \) and hence one will have \(n_c = 0 \), that is closed-loop stability.

\[G = \frac{40(s + 2)}{(s + 10)(s + 4)(s - 1)}; \]
\[n_o = 1 \]
\[n_q = -1 \]
\[\Rightarrow \quad n_c = 0 \]

Clearly stable for current \(K = 1 \). However, \(K < 0.5 \) will remove the counter clockwise encirclement and hence closed-loop instability would follow.

REMARKS The result is based on two things which students must be skilled at:

1. Counting open-loop RHP poles – a common mistake is to forget the distinction between LHP and RHP poles. Only count open-loop RHP poles. This is \(n_o \).
2. Sketch the Nyquist diagram of the loop transfer function and count encirclements of the -1 point. This is \(n_q \).

Determine the number of RHP closed-loop poles from \(n_c = n_q + n_o \).

Published with Creative Commons License by J.A. Rossiter, University of Sheffield