Modelling and control summaries

by Anthony Rossiter

Block diagrams 2 – systems in series

INTERPRETING BLOCK DIAGRAMS: Lines represent signals and blocks represent systems. An arrow (or line) into a block represents a system input. An arrow (or line) out of a block represents a system output. Laplace transform of the output is the transfer function multiplied by the Laplace transform of the input. HENCE

Y(s)=G(s)U(s) is equivalent to

System 2

Systems in series

Consider the context where the output from system 1 is the input to system 2. This can be represented by two differential equations as illustrated here.

- System 1 has input u and output y.
- System 2 has input y and output x.

System 1
$$a \frac{dy}{dt} + by = ku$$
 and $c \frac{dx}{dt} + ex = my$

The overall system can now be modelled by using Laplace transforms as in the previous note.

$$Y(s) = \left[\underbrace{\frac{k}{as+b}}_{G_1(s)}\right] U(s) = G_1(s)U(s); \quad X(s) = \left[\underbrace{\frac{m}{cs+e}}_{G_2(s)}\right] Y(s) = G_2(s)Y(s)$$

Combining these two equations and eliminating Y(s), one finds:

$$X(s) = G_2(s)Y(s) = \underbrace{[G_2(s)G_1(s)]}_{G(s)}U(s) = G(s)U(s)$$

A block diagram is a good way of represents this linkage using arrows to represent the change of Y(s) from an output of system 1 to an input of system 2.

<u>REMARK:</u> This concept is easily extended to multiple systems in series and in practice users sketch the block diagram first and then write down the transfer function relationships by inspection.

EXAMPLE OF 3 SYSTEMS IN SERIES AND THE BLOCK DIAGRAM REPRESENTATION

QUESTION 2: Given the following transfer functions and block diagram, find a relationship between W(s) and P(s).

