
Modelling and control 
summaries 

 

by Anthony Rossiter 

1st order modelling 10: mixing tank with reaction 

This note looks at a simple mixing tank system which has flow in at a concentration CA0 and flow out a 
different concentration CA. The aim is to model how the outlet concentration depends upon the inlet 
concentration, flow rates and tank volume.  

ASSUMPTIONS 
1. For simplicity here we assume that the flow in 

F0 and the flow out F1 are equal. This means 
the volume V in the tank is fixed. 

2. The tank is well mixed so the concentration in 
the tank matches the outlet concentration. 

3. The solvent and product A have the same 
density. 

4. There is a reaction in the tank involving A. 
MODELLING is done using a mass or molar balance 
(these are equivalent). To be more precise, we balance 
the rate of change of mass A within the tank. 

 

MASS BALANCE 
Accumulation of A = A (input) – A (output) + generation of A – expenditure of A 
Note that the assumption here is that generation and expenditure (say from reactions) are non-zero due to 
the reaction. 
DEFINE MA as mass per mole for pure A, so mass of A per m3 within solvent is CAMA  
 

 The rate of A coming into the tank is determined by inlet flow F0 and inlet concentration. 
Mass flow rate in = F0CA0 MA 

 The rate of A leaving the tank is determined by outlet flow f1 and outlet concentration. 
Mass flow rate out = F1CA MA 

• The rate of A being consumed/generated is assumed to have some dependence on the concentration 
in the tank, say f(CA) per unit volume. The function may vary with context. 

• The total mass in the tank= VCAMA so, given V and MA are constant. Therefore the rate of change of 
mass in the tank is given by 
 

 
 

 
It is noted that the term MA is a common factor throughout and so can be removed. Also, the assumption is 
that F1=F0=F and hence: 
 
 
 
 

 

We can do no more with this model until the function f(.) is provided. 
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Using deviation variables 
1. Deviation variables are useful for nonlinear processes and will be required when a mixing tank 

contains a reaction. Therefore it is useful to introduce the concept here. 
2. The idea is to define states relative to a known steady-state (for example degrees Celsius is relative 

to the freezing point of water, altitude is relative to ground level on the earth, etc.). 
3. This concept is useful as the deviation variable tells you how far you have moved from a specified 

steady-state. Moreover, it links in with the use of Taylor series for linearization (which implicitly uses 
deviation variables). 

 

STEP 1: Define a known steady-state. 
Note this means the derivative must be 
zero. 
 

 

STEP 2: Define the deviation variables 
as deviations from the selected steady-
state. 
 
 

 

STEP 3: Substitute expressions above 
into the model without a reaction.  
 
 

 

STEP 4: Use the observations of STEP 1 
to remove redundant terms. 
 
 

 
 
 
 

REMARK: In this example, because the underlying model is linear, superposition holds. Consequently the 
model with deviation variables matches the model with the original variables. 

 
 

Numerical example with a reaction 
Find the response of a mixing tank with the following data and subject to  a step increase in CA0 of magnitude 
0.6mole/m3.     F=0.1m3/min; V=2m3; CA0=0.9mole/m3  
There is a reaction inside the tank which consumes A at the following rate; the units of rA are  (mol m−3min)−1 
  
 
Assume the system is initially at steady state before the step change in CA0. 

 
ANSWER:  

1. First we need to express the model in deviation form. To do this the initial steady-state is required 

which can be determined from the underlying model with derivatives equal to zero. Also define the 

deviations variables as distances from the steady-state. 
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2. Next linearise the nonlinear term about the steady-state using a Taylor series and substitute in the 

deviation variables where appropriate. 

 

 

 

 

 

3. Substitute the Taylor series expansion and deviation variables into the original model 

 

 

 

 

 

 

 

4. Note that the definition of the steady-state in step 1, allows us to remove all the terms linked to the 

steady-state as they cancel each other, hence:  

 

 

 

5. Substitute in the numbers provided (V=2, F=0.1, CA,s=0.169) and hence: 

 

 

 

 

 

6. Now the model is in standard time constant form,  using standard responses for a 1st order model: 

 
 
 
Summary 
 

1. Where a mixing tank contains a reaction it may be necessary to resort to deviation variables and 
a Taylor series expansion in order to derive a linearised model around a given operating point. 

2. The operating point should correspond to a steady-state. 
3. The linearised model is only valid for the region within which the Taylor series is a good 

approximation. 
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