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Introduction 

The first video demonstrated that one can solve 

 

 

• The state transition matrix Φ(t) can be computed 
using Laplace methods, although this is tedious 

 

• This video looks at an alternative derivation using 
similarity transforms and eigenvalue/vector 
decompositions. 
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Interim summary 

We expect the modes of behaviour of a state space 
model to be determined by the eigenvalues of the 
A matrix. 

This video series will not get side tracked by special 
cases with embedded pole/zero cancellations, 
repeated poles and non-simple Jordan forms and  
the like. 
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Poles come from 

determinant of (sI-A) 
which are clearly the 

same as the 
eigenvalues of A. 



1st order example and extension 

Consider the case where there is only one state. 

In this case the state space model reduces to a 
standard 1st order differential equation whose 
behaviours are well understood. 

 

 

Can we derive an equivalent solution for matrices? 
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Remark 

From the previous video we know that 

 

 

 

 

A simplistic statement could be to define  the 
following as the meaning of matrix exponential. 
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Alternative insight/key result 

For now ignore the system input and consider the 
system dynamics (transition matrix). 

 

 

 

This definition of Φ(t) accords well with the rules 
for differentiation of exponentials of scalars. 
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Typical text books use 
Maclaurin expansions to prove 
this core result. 



Definition of eAt 

Where it exists (distinct 
eigenvalues), it may be easier to 
use an eigenvalue/vector 
decomposition. 
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Definition of eAt 

Take the result from the previous page and note 
that the middle matrix is diagonal. 

 

 

Therefore: 
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State transition matrix eAt 

It is well accepted that: 

 

 

The state transition matrix  Φ(t) can be defined as 
follows using an eigenvalue/vector decomposition. 
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This is useful as it emphasises the role of the eigenvalues 
in the dynamics of the solution and also exploits scalar 
computations where that is  helpful. 



Summary 

The behaviours of a state-space system are governed by 
the eigenvalues of the A matrix. 

 

 

 

This result follows directly from a Laplace transform 
analysis and also from a similarity transform using the 
eigenvectors. 

For distinct eigenvalues, the state transition matrix is given 
as:   
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