State-space models 7
diagonal canonical form

J A Rossiter
Introduction

1. The previous video showed how to form a state space model from a transfer function using the control canonical form.

2. Where a system has only real and distinct poles, one alternative is the diagonal canonical form.

3. Being diagonal, this has some advantages although the states have less meaning and partial fractions are required.
Partial fractions

Assuming real and distinct poles, a partial fraction expansion takes the following form.

\[
G = \frac{b_{n-1}s^{n-1} + \cdots + b_1s + b_0}{s^n + a_{n-1}s^{n-1} + \cdots + a_2s^2 + a_1s + a_0}
\]

\[
G = \frac{b_{n-1}s^{n-1} + \cdots + b_1s + b_0}{(s + p_1)(s + p_2) \cdots (s + p_n)}
\]

\[
G = \frac{R_1}{(s + p_1)} + \frac{R_2}{(s + p_2)} + \cdots + \frac{R_n}{(s + p_n)}
\]
State-space from partial fraction

Define a separate, independent state for each partial fraction term.

\[G = \frac{R_1}{s + p_1} + \frac{R_2}{s + p_2} + \ldots + \frac{R_n}{s + p_n} \]

\[\frac{dx_1}{dt} = -p_1x_1 + u; \quad \frac{dx_2}{dt} = -p_2x_2 + u; \quad \ldots \]

\[y = R_1x_1 + R_2x_2 + \ldots \]

NOTE: Ignore the residues for now and reintroduce in the output equation!
Example state space model

By inspection.

\[
G = \frac{R_1}{(s + p_1)} + \frac{R_2}{(s + p_2)} + \cdots + \frac{R_n}{(s + p_n)}
\]

\[
\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} -p_1 & 0 & \cdots & 0 \\ 0 & -p_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & -p_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} u
\]

\[
y = \begin{bmatrix} R_1 & R_2 & \cdots & R_n \end{bmatrix} z
\]
Example

Find a state space model for the following.

First do a partial fraction expansion.

\[
G = \frac{3s + 1}{s^3 + 6s^2 + 11s + 6} = \frac{3s + 1}{(s + 1)(s + 2)(s + 3)}
\]

\[
G = \frac{-1}{(s + 1)} + \frac{5}{(s + 2)} + \frac{-4}{(s + 3)}
\]

\[
\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u;
\]

\[
y = \begin{bmatrix} -1 & 5 & -4 \end{bmatrix} z
\]
REPEATED ROOTS AND JORDAN FORMS
Repeated roots

Where a partial fraction has repeated roots a slightly modified, so called Jordan form, is required. It is easier to illustrate this first with some simple examples.

\[G = \frac{R_1}{(s + a)^2} + \frac{R_2}{s + a}; \]

\[H = \frac{R_1}{(s + a)^3} + \frac{R_2}{(s + a)^2} + \frac{R_3}{s + a}; \]
State space form for repeated poles

A suitable A and B matrix to create the required forms is simply stated here.

\[
\begin{align*}
\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} &= \begin{bmatrix} -a & 1 \\ 0 & -a \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u; \\
y &= \begin{bmatrix} R_1 \\ R_2 \\ C \end{bmatrix} z
\end{align*}
\]

\[
(sI - A)^{-1} B = \begin{bmatrix} s+a & -1 \\ 0 & s+a \end{bmatrix}^{-1} B = \begin{bmatrix} s+a & 1 \\ 0 & s+a \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ \frac{1}{(s+a)^2} \\ 1 \end{bmatrix}
\]

\[
C(sI - A)^{-1} B = \frac{R_1}{(s+a)^2} + \frac{R_2}{(s+a)}
\]
State space form for repeated poles

3rd order is similar to 2nd order.

\[
\begin{bmatrix}
\frac{dx_1}{dt} \\
\frac{dx_2}{dt} \\
\frac{dx_3}{dt}
\end{bmatrix} =
\begin{bmatrix}
-a & 1 & 0 \\
0 & -a & 1 \\
0 & 0 & -a
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
+ \begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix} u;
\]
\[
y = \begin{bmatrix}
R_1 \\
R_2 \\
R_3
\end{bmatrix} z
\]

\[
(sI - A)^{-1} B = \begin{bmatrix}
-a & 1 & 0 \\
0 & -a & 1 \\
0 & 0 & -a
\end{bmatrix}^{-1}
\]

\[
\begin{bmatrix}
(s + a)^2 & s + a & 1 \\
0 & (s + a)^2 & s + a \\
0 & 0 & (s + a)^3
\end{bmatrix}
\begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix} = \begin{bmatrix}
\frac{1}{(s + a)^3} \\
\frac{1}{(s + a)^2} \\
\frac{1}{s + a}
\end{bmatrix}
\]

\[
C(sI - A)^{-1} B = \frac{R_1}{(s + a)^3} + \frac{R_2}{(s + a)^2} + \frac{R_3}{s + a}
\]
Find a diagonal/Jordan canonical form for the following

\[X(s) = \frac{4s + 2}{s^3 + 4s^2 + 5s + 2} U(s) \]

First do the partial fraction expansion.

\[G = \frac{6}{(s + 1)^2} + \frac{-2}{(s + 1)} + \frac{-6}{(s + 2)} \]

\[
\frac{d}{dt} \begin{bmatrix} z \\ \end{bmatrix} = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{bmatrix} \begin{bmatrix} z \\ \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u; \quad x = \begin{bmatrix} 6 & -2 & -6 \end{bmatrix} C z
\]
Summary

Illustrated how diagonal state space models can be derived from transfer functions with real and distinct roots by first doing a partial fraction expansion.

Demonstrated the Jordan form for real and repeated roots.

Diagonal forms would not be suitable for complex poles.
Anthony Rossiter
Department of Automatic Control and Systems Engineering
University of Sheffield
www.shef.ac.uk/acse

© 2016 University of Sheffield

This work is licensed under the Creative Commons Attribution 2.0 UK: England & Wales Licence. To view a copy of this licence, visit http://creativecommons.org/licenses/by/2.0/uk/ or send a letter to: Creative Commons, 171 Second Street, Suite 300, San Francisco, California 94105, USA.

It should be noted that some of the materials contained within this resource are subject to third party rights and any copyright notices must remain with these materials in the event of reuse or repurposing.

If there are third party images within the resource please do not remove or alter any of the copyright notices or website details shown below the image.

(Please list details of the third party rights contained within this work.

If you include your institutions logo on the cover please include reference to the fact that it is a trade mark and all copyright in that image is reserved.)